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LETTER TO THE EDITOR

A truncated shift-operator technique for the calculation of
resonances in Stark systems

M Glück, A Kolovsky and H J Korsch
FB Physik, Universiẗat Kaiserslautern, D-67653 Kaiserslautern, Germany

Received 30 September 1998

Abstract. A novel method is presented which allows a fast computation of complex energy
resonance states in Stark systems, i.e. systems in a homogeneous field. The technique is based on
the truncation of a shift-operator in momentum space. Numerical results for space periodic and
non-periodic systems illustrate the extreme simplicity of the method.

Systems in static homogeneous fields appear in many cases in atomic, molecular and solid state
physics [1–3]. At present, one observes a renewed interest stimulated by dynamical studies of
systems, where in addition to the static field the system is affected by strong time-dependent
fields [4–6].

In this letter, we confine ourselves to the discussion of a new and extremely simple method
for computing complex energy resonance states in such systems. In previous studies complex
energy resonances in Stark systems have been almost exclusively calculated by means of
complex scaling techniques (see, e.g., [1, 7]). Here we present an alternative method, which
seems to be conceptually different and in several aspects simpler in numerical applications.

To be specific, we discuss as an illustrating example a system with a single degree of
freedom

H = H0 + f x = p2

2
+ V (x) + f x with V (x +L) = V (x) (1)

i.e. a periodic potential in a static field (f > 0). This set-up is well known in solid state
physics, but is also of interest in recent studies of atoms interacting with standing wave fields.
In the latter case, the potential is also often modulated in time, e.g. time periodic. We comment
on this time-dependent case in the concluding remarks below.

It is well known that the field termf x in the time-dependent Schrödinger equation

ih̄∂t |ψ(t)〉 = H |ψ(t)〉 (2)

can be removed by a gauge transformation to the momentum frame

|ψ(t)〉 = e−if xt/h̄|ψ̃(t)〉 = S(t)|ψ̃(t)〉 (3)

where

ih̄∂t |ψ̃(t)〉 = H̃0(t)|ψ̃(t)〉 (4)

with the Hamiltonian

H̃0(t) = S†(t)H0S(t) = 1
2(p − f t)2 + V (x) (5)
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which is explicitly time dependent. We note, thatS(t) acts as a shift-operator in momentum
space (p = h̄k):

S(t)|k〉 = |k − f t/h̄〉. (6)

The time evolution operatorsU andŨ for a time interval(0, T ) are related by

U(T , 0) = S(T )Ũ(T , 0). (7)

In addition one can easily see that

Ũ (νT , 0) = e+iνf xT /h̄{S(T )Ũ(T , 0)}ν (8)

and, of course,

U(νT , 0) = Uν(T , 0) (9)

because the Hamiltonian (1) is time independent.
The Hamiltonian (5) is periodic in space. But as the displacement operatorD(L) =

exp(L∂/∂x) over a periodL does not commute with the shift operatorS(T ), generallyU(T , 0)
andD(L) do not commute. We have

S(T )D(L) = e−ifLT/h̄D(L)S(T ) (10)

and the commutator is

[S(T ),D(L)] = (1− eifLT/h̄)e−ifLT/h̄D(L). (11)

We observe that both operators commute if the condition

f T L

h̄
= 2πq q = 1, 2, 3, . . . (12)

is satisfied.
In the following we chooseq = 1, i.e. a timeT = 2πh̄/fL, the so-called Bloch period.

In this case [D(L),U(T ,0)] = 0 and Floquet–Bloch theory can be applied to construct the
resonance states, i.e. the eigenstates of the Floquet operator satisfying

U(T , 0)|ψα〉 = λα|ψα〉 = e−iεαT /h̄|ψα〉 (13)

with purely outgoing boundary conditions, i.e. we are interested in solutions, which vanish for
x → +∞ and are purely outgoing forx → −∞. These are resonance states with complex
resonance energiesεα = Eα − i0α/2 and decay as

ψα(nT ) = e−inεαT /h̄|ψα〉 (14)

with a lifetimeτ = h̄/0α. We point out, that the quasi-energy resonances are defined modulo
2πh̄/T = fL and we take representative values in the first ‘Brillouin zone’, where the real
part ofεα is in the interval [−fL/2,+fL/2].

It is convenient to carry out the calculations in the momentum representation with an
equidistant set of plane wave basis states

〈x|n〉 = 1√
L

ein1kx n = 0,±1,±2, . . . (15)

with

1k = f T/h̄ = 2π/L. (16)

The shift-matrix is

〈m|S(T )|n〉 = 〈m|n− 1〉 = δm,n−1 (17)
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where the plane wave states are normalized to unity in a periodL. Numerically, the time
evolution matrixŨ (T , 0) is calculated by, e.g.,

Ũ (T , 0) ≈
J∏
j=1

exp[−iH̃0(tj −1t/2)1t/h̄] (18)

(with tj = j1t = jT /J ) or any other appropriate method.
We now look at the effect of finite basis sets, i.e. of truncating the matricesS(T ) and

Ũ (T , 0) at |n| 6 N . First we observe, that the(2N + 1)× (2N + 1)-matrixS(T ) has non-zero
entries only on a diagonal, which is shifted by one unit to the upper right. A direct consequence
of the truncation is that the eigenvectors|ψα〉 of the truncated systemU(T , 0) = S(T )Ũ(T , 0)
automatically satisfy the boundary condition for the resonances states in momentum space,
i.e. the components are zero atk = −1knnmax.

Then the eigenvaluesλα and eigenvectors of the Floquet matrixF(T ) = U(T , 0) yield
the resonance energies

εα = Eα − i

2
0 = i

h̄

T
ln λ (19)

more precisely, the desired resonance energies are found among the 2N + 1 eigenvalues of the
truncated matrix, typically those energiesεα with the smallest imaginary parts.

Before discussing further details, we will present results of numerical calculations for an
illustrating model system

H = H0 + f x = p2

2
+ cosx + f x (20)

with parameters ¯h = 0.5 andf = 0.2, i.e. Bloch periodT = 2.5. In this case, the matrix
elements of the HamiltoniañH0 are

〈m|H0|n〉 = (nh̄1k − f t)2δmn/2 +Vmn (21)

with

Vmn = 1
2(δm,n+1 + δm,n−1). (22)

For the time propagation (18)J = 256 steps are used and the matrices are truncated atN = 30.
It is instructive to look at the iteratesUν(T , 0) = U(νT , 0) of the matrixU(T , 0). Initially, this
matrix is almost diagonal. With increasingν, due to the static field this diagonal contribution
moves to the upper right (in the direction of the outgoing wave) until it disappears forν > N .
In contrast to this the contribution of the resonance states is not shifted by the external field but
stays in the centre of the matrix. Figure 1 shows an image of theUν(T , 0) for ν = 20 (dark
regions correspond to large values of the matrix elements), where the shifted diagonal and the
contributions of the resonances are clearly visible.

In order to find the complex energy resonances, we now compute the eigenvaluesλα of
U(T , 0). This yields 61 eigenvaluesεα. For large enoughN , we expect the ‘true’ resonances
to be stable with respect to an increase ofN . In order to explore this behaviour, we have
repeated the computation forN = 40 and 50. The results are shown simultaneously in figure 2
in the complexλ = exp(−iε) plane. First, because all resonances are decaying states, theλα
appear inside the unit discλα 6 1. Secondly, we observe a number of resonances (the ‘true’
ones), which are identical in all three cases. The other ones are distributed in the vicinity of a
radius|λ| ≈ 0.4 and appear otherwise quite erratic. With increasingN more of these ‘false’
resonances appear (in addition, more very unstable ‘true’ ones may be detected). The two
classes can be quite easily distinguished because the ‘false’ ones are very sensitive against any
variation ofN or other system parameters, as, e.g., the number of time intervals chosen for the
numerical computation of̃U(T , 0).
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Figure 1. Image of the matrixUν(T , 0) = U(νT , 0) (ν = 20, N = 30) for the periodic potential
(20). Dark regions mark large values of the matrix elements. The resonances manifest inside the
dark region in the centre.

Figure 2. Complex energy resonancesεα for the periodic potential (20) forf = 0.2, h̄ = 0.5 in
the complexλ = exp(−iεT /h̄) plane (for a clearer presentation the radial coordinate is scaled as
|λ|f ). Results obtained from different values of theN are shown simultaneously (N = 30 (G),
N = 40 (F),N = 50 (+)). The ‘true’ resonances are identified by coincidence.

In table 1 12 ‘true’ eigenvalues are listed in comparison with resonance energies obtained
by means of exterior complex scaling [8] (the real part is chosen in the first Brillouin zone
[−fπ, f π ]). The agreement is excellent. In addition, we wish to emphasize the simplicity of
the computational encoding and the reliability of the method even for small basis setsN and
only few time stepsJ . The following MATLAB program:
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Table 1. Resonances for the system (20) (¯h = 0.5, f = 0.2) in comparison with results by exterior
complex scaling (cs) [8]. The 12 most stable resonances are shown.

α Eα 0α/2 Ecs
α 0cs

α /2

0 −0.152 867 70−3.236 3851e-09−0.152 867 71−3.236 3488e-09
1 0.304 827 23−2.363 0620e-06 0.304 827 22−2.363 0619e-06
2 −0.541 099 34−6.049 2101e-04−0.541 099 35−6.049 2101e-04
3 −0.202 122 14−2.473 5698e-02−0.202 122 15−2.473 5698e-02
4 0.108 234 40−1.308 1073e-01 0.108 234 39−1.308 1072e-01
5 0.450 543 23−2.693 2098e-01 0.450 543 19−2.693 2097e-01
6 −0.436 565 84−3.881 7725e-01−0.436 565 79−3.881 7729e-01
7 −0.006 576 71−4.785 6857e-01−0.006 576 64−4.785 6836e-01
8 0.482 748 13−5.630 8779e-01 0.482 742 15−5.630 9761e-01
9 −0.325 339 02−6.276 9474e-01−0.325 458 33−6.276 6418e-01

10 2.299 984 51−6.283 6674e-01 0.299 923 08−6.283 5297e-01
11 −0.160 910 33−6.540 6891e-01−0.160 712 72−6.539 3565e-01

f=0.2; hbar=0.5; J=5; N=10;
M=2*N+1;
n=1:M; p=hbar*(n-N-1);
U=eye(M); d=0.5*ones(1,M-1);
for j=1:J

h=(p-hbar*(j-0.5)/J ).ˆ2/2;
U=expm(-i*(diag(h,0)+diag(d,-1)+diag(d,1))/J/f)*U;

end
S=spdiags(ones(M,1),1,M,M);
D=eig(S*U);
D(length(D))=[];
D= i*log(D);
[a,In]=sort(-imag(D));
E = D(In)*f

usesN = 10 andJ = 5 and produces resonances (ordered with respect to increasing imaginary
part), where the first six resonances are already in good agreement with the converged ones
listed in the table (e.g. one obtainsε5 = 0.450 59− i0.269 22 compared with the exact result
ε5 = 0.450 543 23− i0.269 320 98).

The discussed method also suggests a simple calculation of the eigenstates associated with
the complex energiesεα. Using the Floquet time-dependent eigenstates

U(t, 0) |ψα(0)〉 = e−iεαt/h̄|ψα(t)〉 |ψα(T )〉 = |ψα(0)〉 (23)

the resonance wavefunction is calculated by integration over one Bloch period,

|9α(0)〉 =
∫ T

0
dt ′ eiεαt ′/h̄U(t ′, 0)|ψα(0)〉 =

∫ T

0
dt ′ |ψα(t ′)〉. (24)

In fact, |9α(0)〉 solves the time-independent Schrödinger equation which follows from

|9α(t)〉 =
∫ T

0
dt ′ eiεαt ′/h̄U(t + t ′, 0)|ψα(0)〉 = e−iεαt/h̄|9α(0)〉. (25)

As an example, the wavefunctions|〈x|9α〉|2 of the four most stable resonances of the system
(20) are shown in figure 3.

In the rest of the paper we discuss a possible extension of the proposed method. Though
designed for space periodic HamiltoniansH0, the method can also be applied to non-periodic
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Figure 3. Resonance wavefunctionsψα(x) for the four most stable statesα = 0, 1, 2, 3 for the
cosine potential in a homogeneous field (20). Parameters are the same as in figure 2 and table 1.
Shown are|ψα(x)|2, the energy levels (dashed lines) and the potential. The stateα = 3 is already
located above the barrier.

ones withV (x)→ 0 for |x| → ∞, provided that their Fourier transform exists. In the plane
wave basis (15) with a fixed value of1k, the system is periodic in the periodicity interval
−L/2 6 x 6 L/2 with L = 2π/1k. If 1k is chosen small enough, the effects of this
artificial periodicity will be negligible.

As an example, we calculate the resonances for the Gaussian well

H = H0 + f x = p2

2
− Ae−x

2
+ f x (26)

withA = 4.5,f = 1.0 andh̄ = 1.0, which has been studied using complex scaling techniques
[1]. Here, the matrix elements (22) must be replaced by

Vm,n =
√
π

L
e−(n−m)

21k2/4. (27)

In the computation we used1k = 1
3 andN = 45. The three most stable resonances are

obtained asε0 = −3.297 8304− i4.467 066× 10−4 ε1 = −1.460 431− i3.481 73× 10−1

and ε2 = +3.016 10− i9.392× 10−1. The lowest one was reported earlier [1] asε0 =
−3.297 830− i4.467× 10−4, in good agreement with the present result.

In conclusion, we have demonstrated that the truncated shift-matrix technique offers a
useful tool for calculating resonances in periodic or non-periodic systems in homogeneous
fields. The method can also be applied to systems with more than one degree of freedom. In
addition, we would like to point out, that it is also possible to treat explicitly time periodic
systems in the same manner, provided that the Bloch period is an integer multiple of the time
period. More detailed studies will be reported elsewhere [9].

The authors thank N Moiseyev for providing the resonance data obtained from complex scaling.
This work has been supported by the Deutsche Forschungsgemeinschaft (SPP ‘Zeitabhängige
Pḧanomene und Methoden in Quantensystemen der Physik und Chemie’).
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